SMAW Electrode Classification

Classification	Welding Current	Arc	Penetration	Coating/Slag	Iron Powder
EXX10	DC+	Digging	Deep	Cellulose-Sodium	0-10%
EXXX1	AC, DC+	Digging	Deep	Cellulose-Potassium	0%
EXXX2	AC, DC-	Medium	Medium	Titania-Sodium	0-10%
EXXX3	AC, DC-, DC+	Soft	Light	Titania-Potassium	0-10%
EXXX4	AC, DC-, DC+	Soft	Light	Titania-Iron Powder	25-40%
EXXX5	DC+	Medium	Medium	Low Hydrogen-Sodium	0%
EXXX6	AC,DC+	Medium	Medium	Low Hydrogen-Potassium	0%
EXXX8	AC, DC+	Medium	Medium	Low Hydrogen-Iron Powder	25-40%
EXX24	AC, DC-, DC+	Light	Light	Titania-Iron Powder	50%
EXX28	AC, DC+	Medium	Medium	Low Hydrogen-Iron Powder	50%

Steel Alloy Suffixes for SMAW Electrodes

_		
	Suffix	Major Alloy Element(s) .
	1) Al	0.5% Molybdenium
	2) B1	0.5% Molybdenium + 0.5% Chromium
	3) B2	0.5% Molybdenium + 1.2 <mark>5% Chromium</mark>
	<i>4) B3</i>	1.0% Molybdenium + 2.25% Chromium
	5) B4	0.5% Molybdenium + 2.0% Chromium
	6) C1	2.5% Nickel
	7) C2	3.5% Nickel
	8) C3	1.0% Nickel
	9) D1	0.3% Molybdenium + 1.5% Manganese
	10) D2	0.3% Molybdenium + 1.75% Manganese
	11) G	0.2% Molybdenium + 0.3% Chromium + 0.5% Nickel + 1.0% Manganese + 0.1% Vanadium
	12) W	Weathering Steel

Selecting a SMAW Electrode

- If your welding project is to be performed under a welding code, the particular electrode to be used may be chosen for you, leaving you no choice but to use a specific electrode
- If one is not specified and you have to select one that is appropriate, follow these steps:
 - Identify the base metals most carbon steels use E6OXX or E70XX electrodes. If welding an alloy, identify the alloy to select the proper electrode
 - Classify the type of joint An out of position (vertical or overhead) weld or a weld with a large root opening may require a fast freeze electrode. Welds requiring a large amount of weld metal and are in the flat or horizontal position often require fast fill electrodes. Those welds out of position and requiring high deposition rates generally use fill freeze electrodes
 - <u>Consider the power source</u> make sure it can accomodate your electrode
 - Select the proper diameter Correct diameter produces the desired weld bead in the fastest time. Larger electrodes diameters are used on thicker base metals and give deeper penetrations. Small diameter electrodes create a smaller weld puddle in out of position welds to prevent spilling and to allow the puddle to freeze faster